Attractor-map versus autoassociation based attractor dynamics in the hippocampal network.
نویسندگان
چکیده
The autoassociative memory model of hippocampal field CA3 postulates that Hebbian associations among external input features produce attractor states embedded in a recurrent synaptic matrix. In contrast, the attractor-map model postulates that a two-dimensional continuum of attractor states is preconfigured in the network during development and that transitions among these states are governed primarily by self-motion information ("path-integration"), giving rise to the strong spatial characteristic of hippocampal activity. In this model, learned associations between "coordinates" on the attractor map and external cues can result in abrupt jumps between states, in the case of mismatches between the current input and previous associations between internal coordinates and external landmarks. Both models predict attractor dynamics, but for fundamentally different reasons; however, the two models are not a priori mutually exclusive. We contrasted these two models by comparing the dynamics of state transitions when two previously learned environmental shapes were morphed between their endpoints, in animals that had first experienced the environments either at the same location, or at two different locations, connected by a passageway through which they walked. As predicted from attractor-map theory, the latter animals expressed abrupt transitions between representations at the midpoint of the morph series. Contrary to the predictions of autoassociation theory, the former group expressed no evidence of attractor dynamics during the morph series; there was only a gradual transition between endpoints. The results of this critical test thus cast the autoassociator theory for CA3 into doubt and indicate the need for a new theory for this structure.
منابع مشابه
Hippocampal attractor dynamics 2010 - 04 - 16 for re - submission to J . Neurophysiol . 1 1 2 3 4 Attractor - Map Versus Autoassociation Based Attractor Dynamics in 5 the Hippocampal Network 6 7
7 Laura L Colgin, Stefan Leutgeb, Karel Jezek, Jill K Leutgeb, Edvard I Moser, 8 Bruce L McNaughton, May-Britt Moser 9 10 11 12 Kavli Institute for Systems Neuroscience and Centre for the Biology of Memory 13 MTFS 14 Olav Kyrres gate 9 15 Norwegian University of Science and Technology 16 NO-7489 Trondheim 17 Norway 18 Canadian Centre for Behavioural Neuroscience 19 The University of Lethbridge ...
متن کاملAttractor Based Analysis of Centrally Cracked Plate Subjected to Chaotic Excitation
The presence of part-through cracks with limited length is one of the prevalent defects in the plate structures. Due to the slight effect of this type of damages on the frequency response of the plates, conventional vibration-based damage assessment could be a challenging task. In this study for the first time, a recently developed state-space method which is based on the chaotic excitation is ...
متن کاملبهبود بازشناسی مقاوم الگو در شبکه های عصبی بازگشتی جاذب از طریق به کارگیری دینامیک های آشوب گونه
In this paper, two kinds of chaotic neural networks are proposed to evaluate the efficiency of chaotic dynamics in robust pattern recognition. The First model is designed based on natural selection theory. In this model, attractor recurrent neural network, intelligently, guides the evaluation of chaotic nodes in order to obtain the best solution. In the second model, a different structure of ch...
متن کاملA quantitative theory of the functions of the hippocampal CA3 network in memory
A quantitative computational theory of the operation of the hippocampal CA3 system as an autoassociation or attractor network used in episodic memory system is described. In this theory, the CA3 system operates as a single attractor or autoassociation network to enable rapid, one-trial, associations between any spatial location (place in rodents, or spatial view in primates) and an object or re...
متن کاملMegamap: flexible representation of a large space embedded with nonspatial information by a hippocampal attractor network.
The problem of how the hippocampus encodes both spatial and nonspatial information at the cellular network level remains largely unresolved. Spatial memory is widely modeled through the theoretical framework of attractor networks, but standard computational models can only represent spaces that are much smaller than the natural habitat of an animal. We propose that hippocampal networks are buil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 104 1 شماره
صفحات -
تاریخ انتشار 2010